Rational designing and constructing multiphase hybrid electrode materials is an effective method to compensate for the performance defects of the single component. Based on this strategy, Cu2 Se hexagonal nanosheets@Co3 Se4 nanospheres mixed structures have been fabricated by a facile two-step hydrothermal method. Under the synergistic effect of the high ionic conductivity of Cu2 Se and the remarkable cycling stability of Co3 Se4 , Cu2 Se@Co3 Se4 can exhibit outstanding electrochemical performance as a novel electrode material. The as-prepared Cu2 Se@Co3 Se4 electrode displays high specific capacitance of 1005 F g-1 at 1 A g-1 with enhanced rate capability (56 % capacitance retention at 10 A g-1 ), and ultralong lifespan (94.2 % after 10 000 cycles at 20 A g-1 ). An asymmetric supercapacitor is assembled applying the Cu2 Se@Co3 Se4 as anode and graphene as cathode, which delivers a wide work potential window of 1.6 V, high energy density (30.9 Wh kg-1 at 0.74 kW kg-1 ), high power density (21.0 Wh kg-1 at 7.50 kW kg-1 ), and excellent cycling stability (85.8 % after 10 000 cycles at 10 A g-1 ).