High-performance sensors play a crucial role in smart wearable technology and human-machine interaction. However, traditional metal- and silicon-based sensors face drawbacks, including limited flexibility, high cost, degradation issues, and insufficient sensitivity. Conductive composite fibers were produced using the spinning solution of PAN and PVB mixed with CNTs and spun at a flow rate of 20 mL·h-1. PAN-CNTs fiber felt formed a sandwich structure by impregnating CNTs aqueous solution, mechanical pressing, and coating graphene. A cost-effective PAN-CNTs nanofiber-based pressure sensor (PCPS) was developed, demonstrating excellent flexibility, conductivity, sensitivity, mechanical properties, and biocompatibility. Nanofiber-based pressure sensors exhibited high sensitivity, with an approximately 75% relative resistance change under a 1 N pressure load. They can withstand 360° bending and have a rapid response time of about 160 ms. PCPS holds significant potential for flexible electronics, smart wearables, and micropressure detection.
Read full abstract