Abstract

Conductivity and alignment of scaffolds are two primary factors influencing the efficacy of nerve repair. Herein, conductive composite fibers composed of poly(ɛ-caprolactone) (PCL) and carbon nanotubes (CNTs) with different orientation degrees are prepared by electrospinning at various rotational speeds (0, 500, 1000, and 2000 rpm), and meanwhile the synergistic promotion mechanism of aligned topography and electrical stimulation on neural regeneration is fully demonstrated. Under an optimized rotational speed of 1000 rpm, the electrospun PCL fiber exhibits orientated structure at macroscopic (mean deviation angle = 2.78°) or microscopic crystal scale (orientation degree = 0.73), decreased contact angle of 99.2° ± 4.9°, and sufficient tensile strength in both perpendicular and parallel directions to fiber axis (1.13 ± 0.15 and 5.06 ± 0.98 MPa). CNTs are introduced into the aligned fiber for further improving conductivity (15.69-178.63 S m-1 ), which is beneficial to the oriented growth of neural cells in vitro as well as the regeneration of injured sciatic nerves in vivo. On the basis of robust cell induction behavior, optimum sciatic nerve function index, and enhanced remyelination/axonal regeneration, such conductive PCL/CNTs composite fiber with optimized fiber alignment may serve as instructive candidates for promoting the scaffold- and cell-based strategies for neural repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.