The Sommerfeld’s problem of plane wave diffraction by a perfectly conducting half-plane is considered for the general case of an absorbing medium and an inhomogeneous incident wave, whose the constant phase planes are not parallel to the constant amplitude ones. The exact solution is represented in terms of parameters of incident wave propagation in the coordinate axes, but not in terms of angular variables, as usually. We adduce the original derivation of this solution, which use generalized functions and admits complex values for propagation parameters. Our approach is based on calculation of diffraction integrals by the method of transformations on the real axis without using a complex argument of integration. The results of diffraction field computation for the cases of an absorbing medium and of a decaying incident wave in a transparent medium are presented.