Growing concerns over resource depletion and air pollution driven by the rising dependence on fossil fuels necessitate the exploration of alternative energy sources. This study investigates the performance and emission characteristics of a diesel engine fueled by biodiesel blends (B10 and B20) derived from castor and corn feedstocks under low-load conditions (idle and minimal accessory loads). We compare the impact of these biofuels on engine power, fuel consumption, and exhaust emissions relative to conventional diesel, particularly in scenarios mimicking real-world traffic congestion and vehicle stops. The findings suggest that biodiesel offers environmental benefits by reducing harmful pollutants like carbon monoxide (CO) and particulate matter (PM) during engine idling and low-load operation. However, replacing diesel with biodiesel requires further research to address potential drawbacks like increased NOx emissions and lower thermal efficiency. While a higher fuel consumption with biodiesel may occur due to its lower calorific value, the overall benefit of reduced contaminant emissions makes it a promising alternative fuel.
Read full abstract