This study evaluated the impact of continuous light (LL) within the photolabile period on advanced puberty in juvenile male European sea bass. The exposure to an LL regime for 1 month, from August 15 to September 15 (LLa/s), was compared to a constant simulated natural photoperiod (NP) and constant continuous light conditions year-round (LLy). Somatic growth, hormone plasma levels, rates of testicular maturation and spermiation, as well as the mRNA levels of some reproductive genes were analyzed. Our results demonstrated that both LLa/s and LLy treatments, which include LL exposure during the photolabile period, were highly effective in inhibiting the gametogenesis process that affects testicular development, and clearly reduced the early sexual maturation of males. Exposure to an LL photoperiod affected body weight and length of juvenile fish during early gametogenesis and throughout the first year of life. Interestingly, LL induced bi-weekly changes in some reproductive factors affecting Gnrh1 and Gnrh2 content in the brain, and also reduced pituitary fshβ expression and plasmatic levels of 11-KT, E2, Fsh throughout early gametogenesis. We suggest that low levels of E2 in early September in the LL groups, which would be concomitant with the reduced number of spermatogonial mitoses in these groups, might indicate a putative role for estrogens in spermatogonial proliferation during the early gonadal development of this species. Furthermore, a significant decrease in amh expression was observed, coinciding with low plasma levels of 11-KT under LL regimes, which is consistent with the idea that this growth factor may be crucial for the progress of spermatogenesis in male sea bass.