Based on the synergistic roles of defect dipoles and MnO2 sintering aid, 0.8BaTiO3-0.2BiScO3 (BTBS0.2) ceramics with and without 0.3 wt% MnO2 were prepared by a solid-phase reaction route. The impacts of MnO2 dopant and sintering conditions on the crystalline structure, micro-morphology, dielectric, and energy storage properties were investigated in detail. The X-ray diffraction (XRD) and Raman results demonstrate the coexistence of tetragonal (T) and pseudo-cubic (pC) phases. The increased pC phase content caused by MnO2 modification is beneficial for the improvement of the relaxation degree. The O 1s fine spectra of X-ray photoelectron spectroscopy (XPS) confirms a remarkable increase in the concentration of oxygen vacancy due to the acceptor Mn dopant, indicating the valence changes of Mn ions from Mn4+ to Mn3+/Mn2+. The reduced dielectric loss is induced by the improved density and the pinning effect from the defect dipoles, thereby yielding a higher Eb. An optimal energy density of Wrec = 0.70 J/cm3 with a high energy efficiency of η = 95.8% at 140 kV/cm was realized in the BTBS0.2+Mn ceramic composition sintered at 1300 °C. Moreover, the ceramic also exhibits good temperature stability (30-120 °C). Therefore, the BTBS0.2+Mn ceramics have a promising application prospect in the energy storage field.
Read full abstract