Wastewater activated sludge (WAS) has poor dewaterability and contains heavy metals (HMs), limiting its land application. Therefore, in this study, a novel pyrite acid eluent-activated peroxymonosulfate (Fe2+pyrite/PMS) conditioning approach that can completely recover the residual pyrite and greatly reduce acid use was developed to improve WAS dewaterability, and the HMs chemical speciation and risks of conditioned WAS were assessed. Our results showed that under the optimized operational parameters, the capillary suction time (CST) and water content (Wc) of WAS decreased by 46.03% and 7.75%, respectively. Furthermore, during Fe2+pyrite/PMS conditioning processing, sulfate radical (SO4−) destroyed the extracellular polymeric substances (EPS) matrix, causing bound water release and the decrease of proteins/polysaccharides in outer layered EPS, even the decomposition of some protein-N in tightly bound EPS (TB-EPS) into inorganic-N. In addition, although the total concentration of HMs in the conditioned WAS matrix increased, the Ni concentration decreased in the solid fraction. Further, the risk assessment code (RAC) levels did not increase, and the eco-toxicity of Cr became weakened after Fe2+pyrite/PMS conditioning. However, after acid extraction, the pyrite residue had worsened recycle performance because the passivation layer contained S0/Sn2− on its surface, and no additional elements were detected in the pyrite residue, which had almost no effect on its further usage.
Read full abstract