Optimal ventriculoaortic coupling includes tuning of elastic properties. The ratio of effective arterial elastance and left ventricular endsystolic elastance is often taken as a measure for mechanical and energetical efficiency. The present study determined the time course of ventricular and aortic volume elasticity (VE = dp/dV) throughout a complete heartbeat. This was achieved by using changes of eigenfrequency of two catheter-transducer systems under closed chest conditions in rabbits. Short-term VE modulation was studied by a baroreflex response, as induced by pressure changes applied to the carotid sinus. Long-term changes were studied in atherosclerotic rabbits (12 wk of high-cholesterol feeding). The time course and mean values of ventricular and aortic VE were changed by the baroreflex stimulus. Cholesterol feeding diminished the response. The degree of ventriculoaortic coupling, as quantified by VE(Aorta)/VE(Ventricle) ratio, varied during a single ejection period. The large span allows either maximal energetical efficiency or maximal stroke work. Although normal rabbits adjusted their ventriculoaortic coupling during baroreflex input, the cholesterol-fed rabbits failed to do so.
Read full abstract