Over the past two decades, techniques have been developed for pipeline leak detection and condition assessment using hydraulic transient waves (i.e. water hammer waves). A common measurement strategy for applications involves analysis of signals from a single pressure sensor located at each measurement site. The measured pressure trace from a single sensor is a superposition of reflections coming from upstream, and downstream, of the sensor. This superposition brings complexities for signal processing applications for fault detection analysis. This paper presents a wave separation algorithm, accounting for transmission dynamics, which enables the extraction of directional travelling waves by using two closely placed pressure sensors at one measurement site (referred to as a dual-sensor). Two typical transient incident pressure waves, a pulse wave and a step wave, are investigated in numerical simulations and laboratory experiments. Comparison of the wave separation results with their predicted counterparts shows the wave separation algorithm is successful. The results also show that the proposed wave separation technique facilitates transient-based pipeline condition assessment.
Read full abstract