This study introduces an overhead heat-integrated distillation column (OHIDiC), a novel approach that maximizes heat recovery by multiple heat exchanges and product circulation. By utilizing the overhead vapor as a direct heat source, low-temperature feed and product water were used as cooling agents, thereby significantly reducing the condenser duty and reliance on cooling utilities. Additionally, the heated feed transfers heat to the column, leading to a substantial reduction of reboiler heat duty. Some of the heated product water is recycled back to the decanter for product cycling, while the rest is released as the final product. This circulation process ensures a continuous coolant supply, which contributes the reduction of condenser duty. Two processes were considered in this study, utilizing the water product from a non-reactive, and from a reactive separation within the system. When applied to the separation of a water-dodecanol mixture, OHIDiC reduced the condenser duty by 69.21% compared to a traditional distillation column, with a 31.46% reduction in the total utility consumption. When reactive distillation was incorporated into the OHIDiC, the higher overhead vapor temperature facilitated high heat transfer in the multiple heat exchange sections, thereby significantly reducing the total thermal load. This resulted in a reduction of up to 46.96% in total heat duty and a 36.06% decrease in CO2 emissions. These findings confirm that the OHIDiC achieves significant energy savings through the utilization of process-derived substances, with pronounced benefits when the temperature of the overhead vapor becomes higher.
Read full abstract