Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium–aluminum-rich inclusions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can constrain the melt’s isotopic compositions. However, equilibrium α is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt–vapor systems based on first-principles molecular dynamics and the high-temperature approximation of the Bigeleisen–Mayer equation. We found that, at 2500 K, δ25Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141 ± 0.004 and 0.143 ± 0.003‰ more positive than in their respective vapors. The corresponding δ26Mg values were 0.270 ± 0.008 and 0.274 ± 0.006‰ more positive than in vapors, respectively. The general $$\alpha - T$$ equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt–vapor systems were: $$\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.264 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)$$ and $$\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.340 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)$$ , respectively, where m is the mass of light isotope 24Mg and m′ is the mass of the heavier isotope, 25Mg or 26Mg. These results offer a necessary parameter for mechanistic understanding of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution.
Read full abstract