The science of soil mechanics is 100 years old, and rock mechanics is about 80 years old. While methods of analysis and design have been developed and have evolved over time, these are relatively young sciences. The rapid increases in computing power and new technologies have enabled more sophisticated modelling and monitoring. However, there are still many aspects of soil and rock mechanics that are not well understood. Geotechnical failures, which have major consequences, still occur. These consequences may include environmental damage, major production holdups and associated loss of revenue, damage to infrastructure, and loss of life. High-consequence events, which are rare, are more difficult to anticipate and to design for, because by their nature they involve extraordinary circumstances or conditions, often geological in nature. The risks are usually mitigated by conservative designs and monitoring. Detailed geotechnical investigations help us to understand the natural variability of soil and rock masses and identify unusual or unexpected conditions. Investigating and researching major geotechnical failures is essential to enable these unusual circumstances to be anticipated. In the past, severe unanticipated events may have been treated as natural events or 'acts of God'. However, society now has much greater expectations and it is essential to have policies and procedures in place that enable appropriate management of these rare, high-consequence risks. A good example is the Global Industry Standard on Tailings Management (GISTM), which was introduced after the catastrophic dam collapse at Vale's Corrego de Feijao mine in Brumadinho, Brazil. The address will explain the concepts of uncertainty and variability, and how they should be taken into account in geotechnical design. The challenges facing geotechnical engineers, mine owners, and managers will be discussed. referencing a number of real case studies. Keywords: uncertainty, variability, risk, consequences, environmental, social, production, revenue, damage, geotechnical, soil mechanics, rock mechanics, design, mine layouts, GISTM, tailings dam, pillar, failure, mechanism, model, seismic, rockburst.
Read full abstract