Digital Twin (DT) technology, which integrates multi-source information, is extensively applied for comprehensive monitoring, predicting, and optimizing manufacturing processes. The core of this technology is the Digital Twin Virtual Model (DTVM), which acts as a virtual mirror reflecting the real-world physical processes within a digital environment. In processes like tube bending, constructing a real-time DTVM capable of capturing full-field plastic deformation is essential for monitoring and analyzing plastic behavior. However, existing DTVMs often simplify spatial resolution and suffer from temporal delays, impeding the accurate real-time depiction of the complete state of the real physical processes. To address this issue, a real-time DTVM construction method based on spatio-temporal cascade reconstruction was proposed for full-field plastic deformation monitoring in metal tube bending. Initially, a joint-section driven predefined bending tube coordinate representation method was introduced to comprehensively capture the entire plastic deformation area in bending tubes. Subsequently, through a physics-derived model integrating limited real-time data and plastic forming theory, a low-fidelity model with complete but low accuracy was obtained. This model was subsequently refined into a high-fidelity model with both completeness and high accuracy using the proposed FPDR-Net. To eliminate temporal lags, the concept of compensation for time-delay through prediction was introduced. The newly developed TSCR-Net was applied to leverage past data to predict the present state, thereby achieving real-time synchronization mapping between the physical process and the DTVM. Finally, the proposed real-time reconstruction method for monitoring was validated through a case study on the bending of a 6061-T6 tube. The accuracy of full-field plastic deformation reconstruction was compared to traditional algorithms and finite element methods. The experimental results demonstrated that the proposed approach is highly efficient for real-time and full-field plastic deformation monitoring.