Concept cognition and knowledge discovery under network data combine formal concept analysis with complex network analysis. However, in real life, network data is uncertain due to some limitations. Fuzzy sets are a powerful tool to deal with uncertainty and imprecision. Therefore, this paper focuses on concept-cognitive learning in fuzzy network formal contexts. Fuzzy object-induced network three-way concept (network OEF-concept) lattices and their properties are mainly investigated. In addition, three fuzzy network weaken-concepts are proposed. As the real data is too large, attribute reduction can simplify concept-cognitive learning by removing redundant attributes. Thus, the paper proposes attribute reduction methods that can keep the concept lattice structure isomorphic and the set of extents of granular concepts unchanged. Finally, an example is given to show the attribute reduction process of a fuzzy network three-way concept lattice. Attribute reduction experiments are conducted on nine datasets, and the results prove the feasibility of attribute reduction.
Read full abstract