The current work explored a comparative study of biodegradable jamun seed/polyvinyl alcohol (JS) nanocomposites reinforced with varying concentrations of ZnO and Ag2O nano-fillers. The effect of spherical shaped ZnO and Ag2O nanoparticles (NPs) on the on structure, morphology, swelling and solubility, crystallinity and mechanical properties together with biodegradation performance of the composite films was fully studied. SEM results showed uniform distribution of ZnO and Ag2O nanofillers into the JS matrix and dense or compact nanocomposite films were formed. JS-ZnO and JS-Ag2O nanocomposites with 0.5 wt% ZnO and Ag2O content showed maximum crystallinity i.e. 11.3 and 9.58 %, respectively, as determined by XRD. When compared to the virgin JS film (8.41 MPa), the resultant JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites showed significantly enhanced tensile strength (35.7 MPa, 29.2 MPa), elongation at break (15.42 %, 14.62 %) and Young's modulus (141 MPa, 126 MPa), respectively. Also, reduced swelling (120.4 % and 116.1 %) and solubility ratio (17.45 % and 18.42 %) was observed for JS-ZnO-0.5 and JS-Ag2O-0.5 nanocomposites, respectively. Biodegradation results showed that maximum degradation (88 %) was achieved for the JS film within 180 days of soil burial whereas JS-ZnO-0.1 and JS-Ag2O-0.1 nanocomposites showed 78 % and 72 % degradation within 180 days, respectively.
Read full abstract