Dairy processing is one of the most polluting sectors of the food industry as it causes water pollution. Given considerable whey quantities obtained via traditional cheese and curd production methods, manufacturers worldwide are encountering challenges for its rational use. However, with the advancement in biotechnology, the sustainability of whey management can be fostered by applying microbial cultures for the bioconversion of whey components such as lactose to functional molecules. The present work was undertaken to demonstrate the potential utilization of whey for producing a fraction rich in lactobionic acid (Lba), which was further used in the dietary treatment of lactating dairy cows. The analysis utilizing high-performance liquid chromatography with refractive index (HPLC-RID) detection confirmed the abundance of Lba in biotechnologically processed whey, corresponding to 11.3 g L-1. The basic diet of two dairy cow groups involving nine animals, Holstein Black and White or Red breeds in each, was supplemented either with 1.0 kg sugar beet molasses (Group A) or 5.0 kg of the liquid fraction containing 56.5 g Lba (Group B). Overall, the use of Lba in the diet of dairy cows during the lactation period equal to molasses affected cows' performances and quality traits, especially fat composition. The observed values of urea content revealed that animals of Group B and, to a lesser extent, Group A received a sufficient amount of proteins, as the amount of urea in the milk decreased by 21.7% and 35.1%, respectively. After six months of the feeding trial, a significantly higher concentration of essential amino acids (AAs), i.e., isoleucine and valine, was observed in Group B. The percentage increase corresponded to 5.8% and 3.3%, respectively. A similar trend of increase was found for branched-chain AAs, indicating an increase of 2.4% compared with the initial value. Overall, the content of fatty acids (FAs) in milk samples was affected by feeding. Without reference to the decrease in individual FAs, the higher values of monounsaturated FAs (MUFAs) were achieved via the supplementation of lactating cows' diets with molasses. In contrast, the dietary inclusion of Lba in the diet promoted an increase in saturated FA (SFA) and polyunsaturated FA (PUFA) content in the milk after six months of the feeding trial.
Read full abstract