ABSTRACTThis study elaborated on the influence of bismuth oxide (Bi2O3, Bi) on optical and radiation shielding properties of Barium titanate (BaTiO3, BTO) when added with different wt% concentrations. To study these properties, BaTiO3–xBi2O3; x = 0,2,4,6 and 8 wt% ceramics samples were fabricated via solid state reaction method. The optical properties of prepared samples were inspected with the help of the UV–Vis technique. The absorption coefficient increased while transmittance decreased with increasing the wt% of Bi content. Samples show a decrement in indirect optical bandgap values from 3.44 to 3.35 eV while direct bandgap from 3.19 to 3.02 eV when Bi content increases from x = 0 wt% to 8 wt%. The other optical parameters, such as Urbach energy, refractive index, extinction coefficient, and dielectric constant, were also calculated. The FESEM (field emission scanning electron microscope) technique was used to identify the homogeneity in the samples. The prepared samples were tested at 356, 511, 600, 1173, 1275, and 1333 keV energies to estimate radiation shielding properties with radioactive sources 133Ba, 22Na, 137Cs, and 60Co. As Bi content increased in prepared samples, the mass attenuation coefficient (MAC) increased. At energy 356 keV, the observed MAC values are 12.685, 12.983, 13.282, 13.58, and 13.898 cm2/g while at 1333 keV, the values noticed as 5.054, 5.066, 5.079, 5.091, and 5.103 cm2/g as Bi content increased from x = 0 wt% to x = 8 wt%. Both atomic cross‐section (ACS) and electronic cross‐section (ECS) were calculated. ACS values are improved from 9.825 to 11.1967 barn/atom while the ECS values enhanced from 3.8949 to 4.0226 barn/electron at 356 keV as Bi content increased from x = 0 wt% to x = 8 wt%. This similar trend was observed at other energies (511, 600, 1173, and 1275 keV) for all prepared samples. The theoretical values obtained from Phy‐X/PSD software were compared with calculated values and found a close agreement between them. From results, it was clear that prepared samples showed enhanced optical and radiation shielding properties when Bi content increased in BTO ceramics.
Read full abstract