Different initial microstructures significantly influence the final microstructures and mechanical properties of the intercritically annealed quenching and partitioning steels. Previous studies have primarily focused on the mechanism for the inheritance of different initial microstructures into the final microstructures, which affects the phase fraction and mechanical properties. However, these studies have overlooked the existence of an inheritance window in the intercritical annealing process. In this study, we investigated the inheritance window and explored the impact of varying initial microstructures on the reverse transformation of austenite, final phase fraction, and mechanical properties. Our findings reveal that the varying initial microstructure exhibits minimal influence on the final microstructure and mechanical properties for short or long annealing times. However, for the intercritical annealing treatment for 60 s, the initial microstructure of martensite with more nucleation sites accelerated the austenite reverse transformation fraction, enhanced the reverse-transformed austenite content, increased the primary martensite content, and improved the yield strength. Conversely, the coil-cooled sample, with initial microstructures consisting of ferrite and pearlite without dissoluble Mn-rich cementites, reduced the austenite reverse transformation rate, decreased the reverse-transformed austenite content, enhanced the ferrite and RA content, and improved ductility.