Although studies suggest that concentrations of omega-3 and omega-6 fatty acids are lower in individuals with schizophrenia, evidence for beneficial effects of fatty acid supplementation is scarce. Therefore, in this study, we aimed to determine whether omega-3 and omega-6 fatty acid concentrations are causally related to schizophrenia. We did a two-sample Mendelian randomisation study, using deidentified summary-level data that were publicly available. Exposure-outcome relationships were evaluated using the inverse variance weighted two-sample Mendelian randomisation method using results from genome-wide association studies (GWASs) of fatty acid concentrations and schizophrenia. GWAS results were available for European (fatty acids) and European and Asian (schizophrenia) ancestry samples. Overall age and gender information were not calculable from the summary-level GWAS results. Weighted median, weighted mode, and Mendelian randomisation Egger regression methods were used as sensitivity analyses. To address underlying mechanisms, further analyses were done using single instruments within the FADS gene cluster and ELOVL2 gene locus. FADS gene cluster and ELOVL2 gene causal effects on schizophrenia were calculated by dividing the single nucleotide polymorphism (SNP)-schizophrenia effect estimate by the SNP-fatty acid effect estimate with standard errors derived using the first term from a delta method expansion for the ratio estimate. Multivariable Mendelian randomisation was used to estimate direct effects of omega-3 fatty acids on schizophrenia, independent of omega-6 fatty acids, lipoproteins (ie, HDL and LDL), and triglycerides. Mendelian randomisation analyses indicated that long-chain omega-3 and long-chain omega-6 fatty acid concentrations were associated with a lower risk of schizophrenia (eg, inverse variance weighted odds ratio [OR] 0·83 [95% CI 0·75-0·92] for docosahexaenoic acid). By contrast, there was weak evidence that short-chain omega-3 and short-chain omega-6 fatty acids were associated with an increased risk of schizophrenia (eg, inverse variance weighted OR 1·07 [95% CI 0·98-1·18] for α-linolenic acid). Effects were consistent across the sensitivity analyses and the FADS single-SNP analyses, suggesting that long-chain omega-3 and long-chain omega-6 fatty acid concentrations were associated with lower risk of schizophrenia (eg, OR 0·74 [95% CI 0·58-0·96] for docosahexaenoic acid) whereas short-chain omega-3 and short-chain omega-6 fatty acid concentrations were associated with an increased risk of schizophrenia (eg, OR 1·08 [95% CI 1·02-1·15] for α-linolenic acid). By contrast, estimates from the ELOVL2 single-SNP analyses were more imprecise and compatible with both risk-increasing and protective effects for each of the fatty acid measures. Multivariable Mendelian randomisation indicated that the protective effect of docosahexaenoic acid on schizophrenia persisted after conditioning on other lipids, although evidence was slightly weaker (multivariable inverse variance weighted OR 0·84 [95% CI 0·71-1·01]). Our results are compatible with the protective effects of long-chain omega-3 and long-chain omega-6 fatty acids on schizophrenia, suggesting that people with schizophrenia might have difficulty converting short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. Further studies are required to determine whether long-chain polyunsaturated fatty acid supplementation or diet enrichment might help prevent onset of schizophrenia. National Institute for Health Research Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol.