In this study, the use of functionalized graphene quantum dots (GQDs) as a fluorescent probe has been investigated for the quantitative determination of galantamine, a choline esterase inhibitor used for the treatment of Alzheimer's disease. The GQDs exhibit a significant quenching in their fluorescence intensity upon interaction with galantamine allowing for sensitive and selective detection of the drug. This quenching process follows a dynamic pattern with a linear relationship between fluorescence intensity and the concentration of galantamine. Several factors affecting the quenching process were investigated and optimized, including the concentration of GQDs, the pH of the solution, and the incubation time. The proposed probe exhibited excellent analytical performance with a linear range of 10-500 ng/mL, a limit of detection of 15 ng/mL, accuracy of 100.78 ± 0.698%, and intraday and interday precision of 0.742 and 1.369%, respectively. Furthermore, the GQDs-based sensor exhibited good selectivity towards galantamine in the presence of potentially interfering substances. Another advantage of the GQDs-based sensor is its greenness evaluation, as it offers a more environmentally friendly alternative compared to traditional methods. In addition, the GQDs-based sensor was successfully applied to analyze galantamine in pharmaceutical samples and invivo samples, demonstrating its potential for pharmacokinetics monitoring.
Read full abstract