It is believed that potassium ions reduce the hydration energy and swelling of clays and thus promoting stability to shales. This belief was made based on volumetric and linear expansion data obtained from shale and KCl solutions interactions. However, swelling data alone is not adequate to mitigate wellbore instability in shale. Such data must be incorporated with mechanical and physicochemical data for complete and accurate wellbore instability analysis.This paper presents clear experimental evidence showing that concentrated potassium chloride solutions tend to suppress shale swelling as higher concentration of potassium ions collapses the diffuse double layer of clay particles causing shale shrinkage which confirms the notion that the Debye length (κ−1) decreases as the ionic concentration increases.Results show that there exists a KCl concentration threshold above which shale’s compressive strength deteriorates significantly. This concentration threshold was found to hover around 5% by weight. The amount of water and ions uptake into shale was quantified using gravimetric measurements. Significant potassium ions invasion into shale was experimentally measured as KCl solution concentration increased which proved the leaky nature of shale’s membrane. The reduction of shale’s compressive strength seems to be well correlated with the amount of ions uptake into shale. Moreover, data suggests that shale’s compressive strength was not significantly impacted by swelling. It was possible to gravimetrically separate osmotic water from associated water as shale interacted with KCl solutions. Results suggest that osmotic water is responsible for shale swelling since it is unattached to ions which makes it free to move around inside shale. On the other hand, data suggest that associated water does not contribute to shale swelling as it is bound to potassium ions which makes it unfree to move around. It is fair to state, based on our experimental data, that osmotic water is responsible for shale swelling while associated water contributes to shale’s compressive strength alteration.