AbstractWalker Creek in Marin County, California is a coastal stream draining to Tomales Bay, which lies in the San Andreas Rift Zone. Its valley contains an alluvial fill with a basal gravel dated at 5000 years BP. In upstream parts of the watershed, channels are incised arroyo‐like in the fill leaving the valley floor standing as a high terrace averaging 5·5 m (18 ft) high. Below this terrace is an inner terrace of historic age that stands 2·4 m (8 ft) above the streambed. The stratigraphy and morphology of this valley are seen in others nearby, and indicate that in the last half of Holocene time in this region a single episode of valley alluviation was followed by two episodes of valley cutting.The second episode of valley cutting is occurring in the present time. During the last 60 years the flow has become seasonal, the stream has incised 1·5 m (5 ft) below the inner terrace in upstream reaches, aggraded 1·2 m (4 ft) in downstream reaches, and extended its estuary. Incision upstream has begun to re‐expose the bedrock valley floor and is associated with aggradation downstream that has caused the flood plain to overtop both terraces. This has decreased the stream's gradient.Using a stream that is currently effecting major changes in its valley and channel morphology, two aspects of hydraulic adjustment in fluvial systems are examined. The changes in the average slope of the longitudinal profile are small but measureable. Profile concavity has not changed measurably. The various profiles that have existed in Holocene time show that stream gradient can be, but is not necessarily, slightly adjusted during valley filling and cutting. Flow measurements at a high discharge show that the channel has begun to assume the hydraulic geometry of an ephemeral channel. Adjustments of depth, velocity, and roughness appear to be hydraulic adjustments in response to changing watershed conditions.