The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.