In this article, using Nehari manifold method we study the multiplicity of solutions of the nonlocal elliptic system involving variable exponents and concave-convex nonlinearities, $$\displaylines{ (-\Delta)_{p(\cdot)}^{s} u=\lambda a(x)| u|^{q(x)-2}u+\frac{\alpha(x)}{\alpha(x) +\beta(x)}c(x)| u|^{\alpha(x)-2}u| v| ^{\beta(x)}, \quad x\in \Omega; \cr (-\Delta)_{p(\cdot)}^{s} v=\mu b(x)| v|^{q(x)-2}v+\frac{\alpha(x)}{\alpha(x) +\beta(x)}c(x)| v|^{\alpha(x)-2}v| u| ^{\beta(x)},\quad x\in \Omega; \cr u=v=0,\quad x\in \Omega^c:=\mathbb R^N\setminus\Omega, }$$ where \(\Omega\subset\mathbb R^N\), \(N\geq2\) is a smooth bounded domain, \(\lambda,\mu>0\) are parameters, and \(s\in(0,1)\). We show that there exists \(\Lambda>0\) such that for all \(\lambda+\mu<\Lambda\), this system admits at least two non-trivial and non-negative solutions under some assumptions on \(q,\alpha,\beta,a,b,c\).
 For more information see https://ejde.math.txstate.edu/Volumes/2020/98/abstr.html
Read full abstract