Computer science is a dynamic field of study that requires constant review and updating of the curricular designs in academic programs—in general, measuring the impact of plan changes has been little explored in the literature. In most cases, it focuses only on structuring its curricula, leaving aside several factors associated with important events or facts such as student dropout, retention, and inclusion. However, these features provide academic institutions with many opportunities to understand student performance and propose more effective preventive/corrective actions to avoid dropouts. This work focuses on the curricular changes’ influence on student gender imbalance, socioeconomic provenance, and dropout. Specifically, we employ three different approaches for our analysis: (i) a longitudinal study of four curricula from informatics engineering to computer science transition at San Pablo Catholic University, (ii) an exploratory analysis for identifying essential features that determines the events mentioned above, and (iii) a survival analysis to estimate the probability that a student will stay (not dropout) before graduate, and calculate the average permanence time per curricula. Our analysis shows that the female student rates decreased, student rates from lower socioeconomic provenance increased, and the dropout rates were reduced with updates towards an internationally standardized curriculum. This is even strongly evidenced when the program changes its name. Finally, the set of techniques employed in this work composes a statistical mechanism that can be replicated/adapted to any other program in computer science aiming to extract valuable insights to support the decision-making process in educational institutions.
Read full abstract