A \emph{temporal graph} is, informally speaking, a graph that changes with time. When time is discrete and only the relationships between the participating entities may change and not the entities themselves, a temporal graph may be viewed as a sequence $G_1,G_2\ldots,G_l$ of static graphs over the same (static) set of nodes $V$. Though static graphs have been extensively studied, for their temporal generalization we are still far from having a concrete set of structural and algorithmic principles. Recent research shows that many graph properties and problems become radically different and usually substantially more difficult when an extra time dimension in added to them. Moreover, there is already a rich and rapidly growing set of modern systems and applications that can be naturally modeled and studied via temporal graphs. This, further motivates the need for the development of a temporal extension of graph theory. We survey here recent results on temporal graphs and temporal graph problems that have appeared in the Computer Science community.
Read full abstract