The application of physiological and biochemical indicators in athlete training and competition has become a hot research topic in related fields at home and abroad. Both coaches and scientific researchers hope to use quantitative physiological and biochemical indicators to study the load, fatigue, and recovery of athletes in training competitions and use them to scientifically guide athletes in training competitions, improve sports performance, and reduce injuries. This article introduces in detail the development status of wireless sensor network technology, energy consumption detection system, and ZigBee technology. On this basis, the focus is on the design of the detection terminal (coordinator and router node), the routing protocol of the ZigBee network, and the algorithm for the detection of human energy consumption. This subject proposes a design plan for the human exercise energy consumption detection system and researches and designs the wireless sensor network coordinator, router node, and host computer monitoring system. The microprocessors of the two types of network nodes use the single‐chip microcomputer. Among them, the router node is composed of sensor modules, data transmission modules, and power modules; the software part is transplanted to ZigBee protocol Z‐Stack, combined with the routing algorithm, and we add the corresponding node function code to achieve them. Based on the introduction of the development status and development points of the single‐chip‐based motion wireless sensor, this article focuses on the analysis of the single‐chip‐based motion wireless sensor network products. The common features of the single‐chip microcomputer are wireless, huge low power consumption, and simple development. Engineering practice shows that the designed system is relatively good in terms of reliability and stability of data transmission; even in the case of severe noise interference and electromagnetic interference, the probability of network nodes malfunctioning is still very small. The router node processes and analyzes the collected motion data, calculates the energy consumption and motion state of human motion based on the acceleration value of each axis and extracts data characteristics, and transmits the obtained results to the coordinator for real‐time display.
Read full abstract