A computational homogenization procedure based on the crystal plasticity model was proposed herein to predict the tensile deformation behavior and investigate the anisotropic response of a novel third generation Al-Li alloy (AA2060-T8) at room temperature and different deformation conditions. To elucidate the in-grain deformation features, a representative volume element was constructed to reveal the microstructure of the real AA2060-T8 (polycrystalline material) in which each grain was discretized by many finite elements. Afterward, numerical results were assigned to each grain to explore the pre-texture formed by previous thermomechanical processes. A dislocation density-based crystal plasticity model was developed to infer the constitutive equation of each grain and simulate the plastic deformation of AA2060-T8 alloy. The material parameters used in the dislocation density-based crystal plasticity model were calibrated against a tensile stress-strain curve deformed at 30° with respect to rolling direction. The results obtained from the proposed computational homogenization method are in line with those obtained from experimentation. This indicates that the proposed computational homogenization method can definitely predict the tensile deformation behavior and capture the anisotropic responses of AA2060-T8 (polycrystalline materials) originating from deformation induced texture as well as the initially anisotropic texture.
Read full abstract