We developed an atomizer nozzle equipping a medical device used for airborne disinfection of medical rooms. The diffusion technology of the equipment is based on the spraying of fine liquid droplets of disinfectant into the volume to be treated. The liquid phase is expulsed thanks to an air assist atomizer we designed, which originality comes from the geometry we give to the throat of the micro-venturi, inner part of the atomizer nozzle. The micro-venturi throat is deviated of angle of 4° and will permit a homogeneous diffusion.We computed three dimensional numerical calculations of the inner compressible turbulent air flow through the atomizer we designed and compared the results obtained with the ones computed for a symmetrical atomizer. The modeling was done with the CFD codes STARCCM+ and Fluent, choosing the k-omega turbulent model. The modeling has been validated especially by one dimensional analytical calculations and experimental measurements of the mean axial velocity and mass flow rate circulating through the atomizer. Three dimensional numerical calculations show the vertical deviation of the flow at throat level and swirl effect generated by the deviated inner throat of the micro-venturi. These calculations allowed understanding the nature of the spray observed in experimental conditions, and the advantages to use a deviated micro-venturi throat.Indeed, micro bacteriological tests showed that the quality and the effectiveness of the diffusion are enhanced in comparison to equipments with a symmetrical micro-venturi.
Read full abstract