Attached cavitation on a wall with continuous curvature is investigated on the basis of experiments carried out on various bodies (circular and elliptic cylinders, NACA 16 012 foil). Visualization of the boundary layer by dye injection at the leading edge shows that a strong interaction exists between attached cavitation and the boundary layer. In particular, it is shown that the cavity does not detach from the body at the minimum pressure point, but behind a laminar separation, even in largely developed cavitating flow. A detachment criterion which takes into account this link between attached cavitation and boundary layer is proposed. It consists of connecting a cavitating potential-flow calculation and a boundary-layer calculation. Among all the theoretically possible detachment points, the actual detachment point is chosen to be the one for which the complete calculation predicts a laminar separation just upstream. This criterion, applied to the NACA foil, leads to a prediction which is in good agreement with experimental results.
Read full abstract