In this paper, direct numerical simulations in a Mach 6.0 hypersonic turbulent boundary layer over a 30 ° compression ramp are performed. The influence of shock wave/boundary layer interactions on the amplification of turbulent kinetic energy (TKE) and temperature fluctuation (TF) is explored, to provide an insight into the physical mechanism. In the initial part of the interaction region before the detachment of the shear layer, the amplification of the TKE and TF is found, via a frequency spectrum analysis, to be closely related to the low-frequency unsteadiness of the shock wave. Once the free shear layer is established, the shear component of the TKE production defined in the shear layer coordinate appears to act as the main contributor for the TKE amplification, owing to the mixing layer turbulence and the resultant Kelvin–Helmholtz instability. This is consistent with the result from the spectrum analysis that the TKE and TF amplification and their streamwise evolution are dominated by the spectral energy in the median-frequency range, arising from the mixing layer turbulence. As the flow moves downstream along the shock wave, the high-frequency spectral energy content of TF shows a decreasing trend, while the low-frequency spectral energy tends to increase gradually, implying that the shock wave low-frequency unsteadiness exists not only in the initial stage of the interaction region but also around the main shock wave. Under the combined influence of the shock wave intensity and interaction intensity, the median-frequency content appears to weaken first and then tends to increase before decreasing again. The variation amplitude appears to be small and generally dominates the distribution of the TF intensity.