Nonlinear frequency compression (NLFC) and digital noise reduction (DNR) are hearing aid features often used simultaneously in the adult population with hearing loss. Although each feature has been studied extensively in isolation, the effects of using them in combination are unclear. The effects of NLFC and DNR in noise on word recognition and satisfaction ratings in noise in adult hearing aid users were evaluated. A repeated measures design was used. Two females and 13 males between the ages of 55 and 83 yr who were experienced hearing aid users participated. Thirteen were experienced with NLFC and all were experienced with DNR. Each participant was fit with Phonak Bolero Q90-P hearing instruments using their specific audiometric data and the Desired Sensation Level v5.0 (adult) fitting strategy. Fittings were verified with probe microphone measurements using speech at 65-dB sound pressure level (SPL). NLFC verification was performed using the Protocol for the Provision of Amplification, Version 2014.01. All testing was conducted in a double-walled sound booth. Four hearing aid conditions were used for all testing: Baseline (NLFC off, DNR off), NLFC only, DNR only, and Combination (NLFC on, DNR on). A modified version of the Pascoe's High-Frequency Word List was presented at 65-dB SPL with speech spectrum noise at 6-dB signal-to-noise ratio (SNR) and 1-dB SNR for each hearing aid condition. Listener satisfaction ratings were obtained after each listening condition in terms of word comfort, word clarity, and average satisfaction. Two-way repeated measures analyses of variance were conducted to assess listener performance. Pairwise comparisons were then completed for significant main effects. Word recognition results indicated a significant SNR effect only (6 dB SNR > 1 dB SNR). Satisfaction ratings results indicated a significant SNR and hearing aid condition effect for clarity, comfort, and average satisfaction. Clarity ratings were significantly higher for DNR and Combination than NLFC. Comfort ratings were significantly higher for DNR than NLFC. Average satisfaction was significantly higher for DNR and Combination than for NLFC. Also, average ratings were significantly higher for Combination than Baseline. Activating NLFC or DNR in isolation or in combination did not significantly impact word recognition in noise. Activating NLFC in isolation reduced satisfaction ratings relative to the DNR or Combination conditions. The isolated use of DNR significantly improved all satisfaction ratings when compared with the isolated use of NLFC. These findings suggest NLFC should not be used in isolation and should be coupled with DNR for best results. Future research should include a field trial as this was a limitation of the study.