Many studies have shown that the prevalence of degenerative spinal cord compression increases with age. However, most cases at early stages are asymptomatic, and their diagnosis remains challenging. Asymptomatic cervical spinal cord compression (ASCC) patients are more likely to experience annular tears, herniated disks, and later develop symptomatic compression. Asymptomatic individuals do not typically undergo spinal cord imaging; therefore, an assessment test that is both sensitive and specific in diagnosing ASCC may be helpful. It has been demonstrated that the Patient Reported Outcome Measure Information System (PROMIS) mobility test is sensitive in detecting degenerative cervical myelopathy (DCM) symptoms. We investigated the use of the PROMIS mobility test in assessing clinical dysfunction in ASCC. In this study, 51 DCM patients and 42 age-matched healthy control (HC) were enrolled. The degree of cervical spinal cord compression was assessed using the high-resolution cervical spinal cord T2 Weighted (T2w) MRIs, which were available for 14 DCM patients. Measurements of the spinal cords anterior-posterior (AP) diameter at the region(s) that were visibly compressed as well as at different cervical spine levels were used to determine the degree of compression. The age-matched HC cohort had a similar MRI to establish the normal range for AP diameter. Twelve (12) participants in the HC cohort had MRI evidence of cervical spinal cord compression; these individuals were designated as the ASCC cohort. All participants completed the PROMIS mobility, PROMIS pain interference (PI), PROMIS upper extremity (UE), modified Japanese orthopedic association (mJOA), and neck disability index (NDI) scoring scales. We examined the correlation between the AP diameter measurements and the clinical assessment scores to determine their usefulness in the diagnosis of ASCC. Furthermore, we examine the sensitivity and specificity of PROMIS mobility test and mJOA. Compared to the HC group, the participants in the ASCC and DCM cohorts were significantly older (p = 0.006 and p < 0.0001, respectively). Age differences were not observed between ASCC and DCM (p > 0.999). Clinical scores between the ASCC and the HC group were not significantly different using the mJOA (p > 0.99), NDI (p > 0.99), PROMIS UE (p = 0.23), and PROMIS PI (p = 0.82). However, there were significant differences between the ASCC and HC in the PROMIS mobility score (p = 0.01). The spinal cord AP diameter and the PROMIS mobility score showed a significant correlation (r = 0.44, p = 0.002). Decreasing PROMIS mobility was significantly associated with a decrease in cervical spinal cord AP diameter independent of other assessment measures. PROMIS mobility score had a sensitivity of 77.3% and specificity of 79.4% compared to 59.1% and 88.2%, respectively, for mJOA in detecting cervical spinal cord compression. Certain elements of ASCC are not adequately captured with the traditional mJOA and NDI scales used in DCM evaluation. In contrast to other evaluation scales utilized in this investigation, PROMIS mobility score shows a significant association with the AP diameter of the cervical spinal cord, suggesting that it is a sensitive tool for identifying early disability associated with degenerative change in the aging spine. In a comparative analysis of PROMIS mobility test against the standard mJOA, the PROMIS mobility demonstrated higher sensitivity for detecting cervical spinal cord compression. These findings underscore the potential use of PROMIS mobility score in clinical evaluation of the aging spine.