A weakly compressible flow direct numerical simulation of a controlled-diffusion aerofoil at $8^{\circ }$ geometrical angle of attack, a chord-based Reynolds number of $Re_{c}=150\,000$ and a Mach number of $M=0.25$ based on the free-stream velocity relevant to many industrial applications was conducted to improve the understanding of the impact of the pressure gradient on the development of turbulent structures. The evolution equations for the two invariants $Q$ and $R$ of the velocity-gradient tensor have been studied at various locations along the aerofoil chord on its suction side. The shape of the mean evolution of the velocity-gradient tensor invariants were found to vary strongly when the flow encounters favourable, zero and adverse pressure gradients and as well for different wall-normal locations. The coupling between the pressure-Hessian tensor and the velocity-gradient tensor was found to be the major factor that causes these changes and is greatly influenced by the mean pressure-gradient condition and the wall-normal distance. Striking differences exist from the mean trajectories of this coupling at least in the log layer and outer layer subject to different mean pressure gradients. The nonlinearity and viscous diffusion effects keep their respective invariant characters regardless of the pressure-gradient effects and wall-normal locations. The wall and the mean adverse pressure gradient were both found to suppress the vortical stretching features of the flow. These features are of great importance for the development of future turbulence models on wall-bounded flows, especially on surfaces with significant curvature such as cambered aerofoils and blades for which significant mean pressure gradients exist.