The air film thickness is an important parameter of an air cushion belt conveyor, which directly affects the compressed air supply power and operating resistance of the system. Therefore, it is important to calculate the bottom thickness of the gas film accurately in the design stage. A calculation method for the thickness of a conveyor air cushion was derived based on the mathematical model of the air cushion flow field for a multi row uniformly distributed air cushion structure. Meanwhile, the algorithm was validated based on a Fluent 3D flow field numerical simulation and experiments. Through verification, it was found that due to the algorithm's assumption that the increase in the gas flow rate only existed at the axis of the gas hole, there was a sudden change in the calculation results of the gas flow rate at the axis of the gas hole. The sudden change in the gas flow rate had caused the calculation results of the air cushion thickness to experience abrupt and discontinuous changes. Furthermore, the calculation method for air cushion thickness was revised based on the verification results. Compared with the experimental test results, the average error of the calculation results of the algorithm proposed in this paper was 14.27%.
Read full abstract