PurposeThe purpose of this study is to establish a synthetic group decision framework based on the Pythagorean fuzzy (PF) set to select the optimal medicine cold chain logistics provider (MCCLP). Fierce market competition makes enterprises must constantly improve every link in the process of enterprise sustainable development. The evaluation of MCCLP in pharmaceutical enterprises is an important link to enhance the comprehensive competitiveness. Because of the fuzziness of expert cognition and the complexity of the decision procedure, PF set can effectively handle the uncertainty and ambiguity in the process of multi-criteria group decision decision-making (MCGDM).Design/methodology/approachThis paper develops an integrated group decision framework through combining the Decision-Making Trial and Evaluation Laboratory (DEMATEL) technique and combined compromise solution (CoCoSo) approach to select a satisfactory MCCLP within PF circumstances. First, the PF set is used to process the ambiguity and uncertainty of the cognition ability of experts. Second, a novel PF knowledge measure is propounded to measure the vagueness of the PF set. Third, a comprehensive criterion weight determination technique is developed through aggregating subjective weights attained utilizing the PF DEMATEL approach and objective weight deduced by knowledge measure method. Furthermore, an integrated MCGDM approach based on synthetic weight and CoCoSo method is constructed.FindingsThe outcomes of sensibility analysis and comparison investigation show that the suggested decision framework can help decision experts to choose a satisfactory MCCLP scientifically and reasonably. Accordingly, the propounded comprehensive decision framework can be recommended to enterprises and organizations to assess the MCCLP for their improvement of core competitiveness.Originality/valueMCCLP selection is not only momentous for pharmaceutical enterprises to improve transportation quality and ensure medicine safety but also provides a strong guarantee for enterprises to improve their core competitiveness. Nevertheless, enterprises face certain challenges due to the uncertainty of the assessment environment as well as human cognition in the process of choosing a satisfactory MCCLP. PF set possesses a formidable capability to address the uncertainty and imprecision information in the process of MCGDM. Therefore, pharmaceutical enterprises can implement the proposed method to evaluate the suppliers to further improve the comprehensive profit of enterprises.