The Comprehensive Nuclear Test Ban Treaty (CTBT) organisation is implementing a world-wide monitoring network in order to check that the State Signatories comply with the treaty. One of the monitoring facilities consists of an atmospheric noble gas monitoring equipment. According to the requirements annexed in the treaty, the French Atomic Energy Commission (CEA) developed a device, called SPALAX TM, which automatically extracts xenon from ambient air and makes in situ measurements of the activities of four xenon radioisotopes ( 131mXe, 133mXe, 133Xe, 135Xe). The originality of this device is noticeable essentially in the gas sample processing method: thanks to the coupling of a gas permeator and of a noble gas specific adsorbent, it can selectively extract and concentrate xenon to more than 3×10 E 6. This process is carried out continuously without cryogenic cooling, without any regeneration time. The detection of the xenon radioactive isotopes is done automatically by high spectral resolution γ spectrometry, a robust technology well-suited for on-field instrumentation. In the year 2000, a prototype was involved in an international evaluation exercise directed by the CTBT organisation (CTBTO). This exercise demonstrated that the SPALAX TM equipment perfectly met the requirements of the CTBTO for such systems. On the basis of the continuous 24-h resolution record of the atmospheric xenon radioactive isotopes concentrations, the SPALAX TM system also demonstrated that ambient levels of 133Xe can fluctuate quickly from less than the detection limit to over 40×10 −3 Bq m −3. In order to build an industrial version of this equipment, the CEA entered into a partnership with a French engineering company (S.F.I., Marseille, France), which is now able to produce an industrial version of SPALAX TM, i.e. more compact and more efficient than the prototypes. The 133Xe minimum detectable concentration is 0.15×10 −3 Bq m −3 air per 24 h sampling cycle.
Read full abstract