Sewage sludge, including those after biological or thermochemical treatments, has the potential to be used as fertilizers for recycle of resources. However, its potential ecological risk is also of great concern to policy making. This study employed comprehensive ecological risk assessment (ERA) methods to evaluate the risk caused by the toxic metal(loid)s in sewage sludge throughout China. The conventional geo-accumulation index and potential ecological risk index revealed that cadmium (Cd) and mercury (Hg) were of significant concern in treating sewage sludge before land application, but chromium (Cr) and zinc (Zn) were preferred by potential affected proportion (PAF) and overall risk probability (ORP) of species sensitivity distribution (SSD). Because SSD considered both the community and the ecotoxicity of toxic metal(loid)s, it was more advantageous and promising in assessing ecological risks caused by land application of sewage sludge. Based on the predicted no-effect concentration (PNEC) of toxic metal(loid) calculated by hazardous concentration that cause death of 50% of species (HC50) by SSD, the maximum allowable disposal amount (MADA) of sewage sludge in the whole China indicated that chromium (Cr) should be totally eliminated because of its high risks in the present background soil. After excluding Cr, the MADA of sewage sludge in China was 3.24 × 106 t and 6.47 × 107 t under land application scenarios with high and low ecological risks, respectively. Additionally, the MADA could be increased by mixing sewage sludge with deeper soil in wider areas. This study emphasized that local laws and regulations on land application of sewage sludge and the subsequent ERA system need to be addressed in the future.