The pathogenesis of breast cancer is characterized by dysregulated cell proliferation, leading to the formation of a neoplastic mass. Conventional methodologies for analyzing carcinomatous distal areas within whole-slide images (WSIs) tissue regions may lack comprehensive insights. This study aims to introduce an innovative methodology based on convolutional neural networks (CNN), specifically employing a CNN Modified ResNet architecture for breast cancer detection. The research seeks to address the limitations of existing approaches and provide a robust solution for the comprehensive analysis of tissue regions. The dataset utilized in this study comprises approximately 275,000 RGB image patches, each standardized at 50x50 pixels. The CNN Modified ResNet architecture is implemented, and a comparative evaluation against diverse architectures is conducted. Rigorous validation tests employing established performance metrics are carried out to assess the proposed methodology. The proposed architecture achieves a notable 89% accuracy in breast cancer detection, surpassing alternative methods by 2%. The results signify the efficacy and superiority of the CNN Modified ResNet model in analyzing carcinomatous distal areas within WSIs tissue regions. In conclusion, this study demonstrates the potential of the CNN Modified ResNet architecture as an effective tool for breast cancer detection. The enhanced accuracy and comprehensive analysis capabilities make it a promising approach for advancing the understanding of neoplastic masses in WSIs tissue regions. Further research and validation could solidify its role in clinical applications and diagnostic procedures.
Read full abstract