PurposeThe purpose of this paper is to propose a whole set of methods for underwater target detection, because most underwater objects have small samples, low quality underwater images problems such as detail loss, low contrast and color distortion, and verify the feasibility of the proposed methods through experiments.Design/methodology/approachThe improved RGHS algorithm to enhance the original underwater target image is proposed, and then the YOLOv4 deep learning network for underwater small sample targets detection is improved based on the combination of traditional data expansion method and Mosaic algorithm, expanding the feature extraction capability with SPP (Spatial Pyramid Pooling) module after each feature extraction layer to extract richer feature information.FindingsThe experimental results, using the official dataset, reveal a 3.5% increase in average detection accuracy for three types of underwater biological targets compared to the traditional YOLOv4 algorithm. In underwater robot application testing, the proposed method achieves an impressive 94.73% average detection accuracy for the three types of underwater biological targets.Originality/valueUnderwater target detection is an important task for underwater robot application. However, most underwater targets have the characteristics of small samples, and the detection of small sample targets is a comprehensive problem because it is affected by the quality of underwater images. This paper provides a whole set of methods to solve the problems, which is of great significance to the application of underwater robot.
Read full abstract