Organic fluorine compounds are acute carcinogenic and mutagenic to humans. Photoelectrocatalysis (PEC) treatment is an innovative technology in the field of the removal of fluorine compounds, and thus current research focused on improving stability and catalytic ability of photoanode. In this study, it has been synthesized a rGO/BiOI photocathode for the efficient degradation of 4-Fluoroaniline (4-FA). The physical characterization and photoelectrochemical properties of the photocathode was determined. The results indicate that the PEC treatment with the rGO/BiOI photocathode was more efficient compared with individual processes. During the optimization experiments, the PEC treatment achieved 99.58 % and 72.12 % of 4-FA degradation and defluorination within 1 h. Cyclic stability experiments show that rGO/BiOI photocathode was efficient and stable, which reached 96.91 % and 67.64 % of 4-FA degradation and defluorination after five cycles. Mechanism analysis indicates that the PEC process was based on an electrochemical reaction and photo-induced processes. The degradation product of 4-FA was mainly 2,4-di-t-butylphenol, and trapping experiments indicates that h+ is the primary oxidizing species. Therefore, PEC treatment with rGO/BiOI photocathode is a competitive green approach to remove fluorine compounds pollutants and brings new insights into development of PEC treatment.