Objective: Nicotine is an active compound in tobacco and has a rewarding effect in the central nervous system (CNS), which may lead to dependence. Although nicotine dependence is elucidated by brain mechanisms, synaptic molecular substrates underlying the dependence remain unclear. We hypothesized that reward signaling is mediated by dopamine and glutamate receptors, in where calcium/calmodulin-dependent kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) may mediate the synaptic signaling of dependence.
 Methods: To investigate the roles of both CaMKII and ERK on nicotine dependence were assessed by conditioned place preference (CPP) methods followed by dissection. One day after conditioning, preference scores were measured to evaluate nicotine dependence. Mice were sacrificed and their striatum were dissected out for immunoblotting analyses of CaMKII and ERK phosphorylation.
 Results: Nicotine-induced conditioned place preference as a symptom of nicotine dependence. CaMKII and ERK phosphorylation in striatum significantly increased along with the development of nicotine dependence.
 Conclusion: We should next apply pharmacological strategies to manipulate CaMKII and ERK signaling. In particular, disruption of reconsolidation by disrupting CaMKII and ERK signaling may propose an attractive therapeutic approach to inhibit nicotine dependence.