The oil industry in Khuzestan province (Southwest Iran) is one of the main reasons contributing to the pollution of the environment in this area. TPH, including both aromatic and aliphatic compounds, are important parameters in creating pollution. The present study aimed to investigate the source of soil contamination by TPH in the Ahvaz oil field in 2022. The soil samples were collected from four oil centers (an oil exploitation unit, an oil desalination unit, an oil rig, and a pump oil center). An area outside the oil field was determined as a control area. Ten samples with three replicates were taken from each area according to the standard methods. Aromatic and aliphatic compounds were measured by HPLC and GC methods. The positive matrix factorization (PMF) model and isomeric ratios were used to determine the source apportionment of aromatic compounds in soil samples. The effects range low and effects range median indices were also used to assess the level of ecological risk of petroleum compounds in the soil samples. The results showed that Benzo.b.fluoranthene had the highest concentration with an average of 5667.7 ug/kg in soil samples in the Ahvaz oil field. The highest average was found in samples from the pump oil center area at 7329.48 ug/kg, while the lowest was found in control samples at 1919.4 ug/kg-1. The highest level of aliphatic components was also found in the pump oil center, with a total of 3649 (mg. Kg-1). The results of source apportionment of petroleum compounds in soil samples showed that oil activities accounted for 51.5% of the measured PAHs in soil. 38.3% of other measured compounds had anthropogenic origins, and only 10.1% of these compounds were of biotic origin. The results of the isomeric ratios also indicated the local petroleum and pyrogenic origin of PAH compounds, which is consistent with the PMF results. The analysis of ecological risk indices resulting from the release of PAHs in the environment showed that, except for fluoranthene, other PAHs in the oil exploitation unit area were above the effects range median level (ERM) and at high risk. The results of the study showed that soil pollution by total petroleum hydrocarbons (TPH), both aromatic and aliphatic, is at a high level, and is mainly caused by human activities, particularly oil activities.
Read full abstract