The Deepwater Horizon (DWH) oil spill marked the largest environmental oil spill in human history, where it was estimated a large amount of the polycyclic aromatic hydrocarbons (PAHs) were released with crude oil into the environment. In this study, common PAH compounds were quantitatively determined in crude oil from the DWH spill by gas chromatography-mass spectroscopy (GC–MS). Twelve PAH compounds were identified and quantified from a 100× dilution of DWH crude oil: naphthalene (7800 ng/mL), acenaphthylene (590 ng/mL), acenaphtehen (540 ng/mL), fluorene (2550 ng/mL), phenanthrene (2910 ng/mL), anthracene (840 ng/mL), fluoranthene (490 ng/mL), pyrene (290 ng/mL), benzo(k) fluoranthene (1050 ng/mL), benzo(b)fluoranthene (1360 ng/mL), dibenz(a,h)anthracene (2560 ng/mL), and benzo(g, h, i) perylene (630 ng/mL). Toxicity assays using the nematode, Caenorhabditis elegans (C. elegans), indicated a single PAH compound naphthalene, exposure increased C. elegans germ cell apoptosis which may adversely affect progeny reproduction. The number of apoptotic germ cells significantly increased from 1.4 to 2.5 when worms were treated with 10 μg/mL of naphthalene and from 1.3 to 2.5 and 3.5 cells in presence of 1 μg/mL and 5 μg/mL of benzo(a)pyrene, respectively. Five CYP450 genes (CYP14A3, CYP35A1, CYP35A2, CYP35A5, and CYP35C1) were significantly upregulated following 500× dilution of dispersed crude oil exposure (p < 0.05). These results suggest that CYP450s may play a role in bioactivation of PAHs in crude oil, resulting in DNA damage related germ cell apoptosis.