A series of cationic T-shaped 14-electron boryl complexes of the type trans-[(Cy3P)2Pt(B(X)X')]+ (X=Br; X'=ortho-tolyl, tBu, NMe2, piperidyl, Br; XX'=(NMe2)2, catecholato) were synthesized by halide abstraction from trans-[(Cy3P)2Pt(Br)(B(X)X')] (Cy=cyclohexyl) with Na[BArf 4] (Arf=3,5-(CF3)2C6H3), K[B(C6F5)4], or Na[BPh4]. X-ray diffraction studies were performed on all compounds, revealing a subtle correlation between the trans-influence of the boryl moiety and the Pt-H and Pt-C separations. However, no notable agostic C-H interaction with the platinum center was detected. trans-[(Cy3P)2Pt(BCat)]+ (Cat=catecholato), the complex with the shortest Pt-H and Pt-C distances, was treated with Lewis bases (L), forming compounds of the type trans-[(Cy3P)2Pt(L)(BCat)]+, thus proving a decisive influence of the degree of trans-influence exerted by the boryl ligands on the chemical reactivity of the title complexes. Another point that was investigated and clarified is the different behavior of trans-[(Cy3P)2Pt(Br)(B(Br)Mes)] (Mes=mesityl) towards K[B(C6F5)4] with formation of the borylene species trans-[(Cy3P)2Pt(Br)(BMes)]+.