Breast cancer is a major issue of investigation in drug discovery due to its rising frequency and global dominance. Plants are significant natural sources for the development of novel medications and therapies. Medicinal mushrooms have many biological response modifiers and are used for the treatment of many physical illnesses. In this research, a database of 89 macro-molecules with anti-breast cancer activity, which were previously isolated from the mushrooms in literature, has been selected for the three-dimensional quantitative structure–activity relationships (3D-QSAR) studies. The 3D-QSAR model was necessarily used in Pharmacopoeia virtual evaluation of the database to develop novel MCF-7 inhibitors. With the known potential targets of breast cancer, the docking studies were achieved. Using molecular dynamics simulations, the targets’ stability with the best-chosen natural product molecule was found. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity of three compounds, resulting after the docking study, were predicted. The compound C1 (Pseudonocardian A) showed the features of effective compounds because it has bioavailability from different coral species and is toxicity-free for the prevention of many dermatological illnesses. C1 is chemically active and possesses charge transfer inside the monomer, as seen by the band gaps of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) electrons. The reactivity descriptors ionization potential, electron affinity, chemical potential (μ), hardness (η), softness (S), electronegativity (χ), and electrophilicity index (ω) have been estimated using the energies of frontier molecular orbitals (HOMO–LUMO). Additionally, molecular electrostatic potential maps were created to show that the C1 is reactive. Communicated by Ramaswamy H. Sarma
Read full abstract