The suitability for aided phytoremediation of Cynara cardunculus L. var. altilis and municipal solid waste compost (MSWC) applied at 2% and 4 % rates was evaluated in a multi potentially toxic element (PTE)-contaminated mining soil (Pb ~ 15,383 mg kg−1, Zn ~ 4076 mg kg−1, As ~ 49 mg kg−1, Cd ~ 67 mg kg−1, Cu ~ 181 mg kg−1, and Sb ~ 109 mg kg−1). The growth of C. cardunculus significantly increased with compost amendment and followed the order: MSWC-4% > MSWC-2% > Control. PTE concentrations in the roots of plants grown on amended soils decreased compared with control plants (i.e., less than ~ 82, 94, and 88% for Pb, Zn, and Cd respectively). PTE translocation from roots to shoots depended on both PTE and amendment rate but values were generally low (i.e., < 1). However, PTE mineralomasses were always higher for plants grown on MSWC-amended soils because of their higher biomass production, which favored an overall PTE bioaccumulation in roots and shoots. After plant growth, labile As and Sb increased in amended soils, while labile Pb, Zn, Cu, and Cd significantly decreased. Likewise, dehydrogenase and urease activities increased significantly in planted soils amended with MSWC. Also, the potential metabolic activity and the catabolic versatility of soil microbial communities significantly increased in planted soils amended with MSWC. Overall, our results indicate that C. cardunculus and MSWC can be effective resources for the aided phytoremediation of multi PTE-contaminated soils.