The application of composite winding pressure vessels is becoming more and more widespread, and the magnitude of deformation during curing can have a significant impact on service performance, but there are fewer studies on the accurate prediction of the numerical and experimental validation of the deformation during the curing process of pressure vessels. To accurately predict the effect of different angles of layup on the curing deformation of high-pressure hydrogen storage vessels made of T700S-12 K/4251A4B2 carbon fiber/epoxy composites in cylindrical and dome sections. In this paper, WCM-ABAQUS segmented pressure vessel accurate modeling method is proposed for the first time, using the method of converting the chemical shrinkage coefficient of epoxy resin into thermal expansion coefficient equivalently, the finite element prediction of the deformation of the pressure vessel during the curing process in different layup sequences was carried out, and the deformation values of the pressure vessel in different layup sequences were analyzed comparatively. Finally, the winding curing experiments were carried out on pressure vessels with different layup sequences, and the curing deformation values of the experimental tests on pressure vessels with different layup sequences were compared with the finite element simulation values, respectively, and the minimum error value 13.07%. It provides a reliable basis for accurately predicting the deformation value of the pressure vessel curing process, and also provides a reference for subsequent experiments to reduce the curing deformation value.
Read full abstract