The composite of fluorine-doped SnO2 anchored on reduced graphene oxide (F-SnO2/rGO) has been synthesized through a hydrothermal method. F-SnO2 particles with average size of 8 nm were uniformly anchored on the surfaces of rGO sheets and the resulting composite had a high loading of F-SnO2 (ca. 90%). Benefiting from the remarkably improved electrical conductivity and Li-ion diffusion in the electrode by F doping and rGO incorporation, the composite material exhibited high reversible capacity, excellent long-term cycling stability and superior rate capability. The electrode delivered a large reversible capacity of 1037 mAh g−1 after 150 cycles at 100 mA g−1 and high rate capacities of 860 and 770 mAh g−1 at 1 and 2 A g−1, respectively. Moreover, the electrode could maintain a high reversible capacities of 733 mAh g−1 even after 250 cycles at 500 mA g−1. The outstanding electrochemical performance of the as-synthesized composite make it a promising anode material for high-energy lithium ion batteries.
Read full abstract